Laser Machining

Laser machining, or laser beam machining, is a non-contact method of removing metal or refractory materials. Using a powerful beam of light from a computer-controlled laser, surface layers are melted and blown away or vaporized. The beam of the laser is an extremely focused radiation of a wavelength, meaning the beam will not dissipate like conventional light beams.

Some laser beam machining services include drilling, graining and 3-D shaping. Serving industries such as medical, aerospace, telecommunication and microtechnology, laser machining applications include thin material processing, thin film patterning, wafer coring and hole drilling. These are just a few of the vast amounts of tools produced by laser cutting machines, since every machine in the manufacturing industry requires such parts.

In laser beam machining, the beam may be shaped in two different ways: either through beam focusing, which uses an optical system to focus the laser beam on a particular size of spot, or through a mask, which utilizes geometric optic properties. Once the beam is shaped, it is controlled through a stable motion system, which is a combination of CNC and CAD computer systems, to achieve high edge quality during laser-material interaction. Assist gases such as nitrogen or carbon dioxide are then used in conjunction with laser machining to prepare newly cut surfaces for painting or corrosion resistance. Materials that can be laser machined include plastics, ceramics, cast iron, precious metals, glass and titanium.

Laser machining services have distinct advantages over conventional cutting processes such as thermal machining, mechanical machining, arc welding, EDM and flame cutting. Laser-machined parts have a condition of nearly zero edge deformation, roll-off or edge factor, leaving very little burring on part edges. Because it is often directed by CNC, laser machining rarely makes mistakes and is able to mass produce the same item quickly and efficiently. Laser machining is faster than conventional tool-making techniques and has a quicker turnaround for parts regardless of complexity because design changes can be easily accommodated.

Fewer technicians are required and safety can be assured, unlike arc welding, which requires individual workers and can be very dangerous. However, laser machining is costly, mostly because it uses a vast amount of energy to run. It is not negotiable for bulk material, nor is it able to operate on a macro scale. That is why CNC machine shops are around, so that individual companies do not need to purchase these machines individually, but can take their designs to professional laser cutters, knowing the quality of their product is insured.

Laser Machining Informational Video